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INTRODUCTION 



Genes and Gene Expression 

◉ DNA – genetic material that stores and transmits 
hereditary information from generation to generation 

◉ Gene – segment of DNA that codes for a specific 
protein 

◉ All cells in an organism have identical genes but 
gene expression and regulation is responsible for 
robust dynamic behavior of cell 
 

 

 

gene expression control 



Microarray Technology 

◉ Monitors genome wide expression 
profile of organism under study 
◉ Microarray – glass slide with DNA 
molecules orderly fixed at specific spots 
◉ Spots contain few million copies of 
DNA corresponding to particular gene 
◉ Works by DNA Hybridization 

 



   Motivation of work 
◉Lung cancer - uncontrolled growth of abnormal 
cells in one or both lungs. 
◉Cancer develops due to DNA damage and 
disruption of control of  gene expression and 
regulation. 
◉Gene expression analysis provides insight into 
gene function and disease physiology. 

In this work 3 key issues are addressed 
◉ identification of genes exhibiting differential 

gene expression patterns between diseased and 
non-diseased population 

◉ clustering significant genes into groups of co-
expressed genes  

◉ construction intra-cluster gene- regulatory 
network  



   Dataset Under Study 

◉The study [1] explores patterns of pathway deregulation in normal airway 
epithelial cells from patients with and without lung cancer. 
◉Gene Expression Omnibus (GEO) Dataset GDS2771 [2] reports genome wide 
expression values for 192 smokers with suspect of lung cancer.  
2 groups of population in dataset 
◉Healthy smokers (90 samples)  
◉Diseased smokers (97 samples) 



   Gene Subset Selection 

◉COSMIC, the Catalogue Of Somatic Mutations In Cancer 
(http://cancer.sanger.ac.uk) manually curates 2002811 coding point mutations in 
human genes from scientific literature. 

◉COSMIC’s  Cancer Browser tool reports 24283 genes including alias to be 
mutated in lung cancer. 
◉Gene expression profile corresponding to 11237 genes were found in the dataset 
GDS2771 were considered for further study. 

http://cancer.sanger.ac.uk/


IDENTIFICATION  
OF  

DIFFERENTIALLY 
EXPRESSED GENES 



   Objective 

◉Differentially expressed genes - gene data determined to be statistical outliers 
from some standard state, which cannot be ascribed to chance or natural 
variability. 
◉Identify genes exhibiting differential expression patterns amongst the two 
classes of population 
◉These genes serve as potential pharmaceutical targets and diagnostic markers. 



   Methodology 
◉Statistical Hypothesis Testing 
◉Null Hypothesis        : expression levels in healthy and diseased population comes from normal 
distributions with equal means. 
◉Alternative hypothesis        : data comes from different distributions with unequal means. 

◉ For each gene compute Welch’s t-statistic                         where            are the sample means,             
and sample variances are     
◉p-value quantifies the probability of observing a test statistic of this extreme or more given that both 
samples come from the same distribution. 
◉A small p-value indicates that there is a small chance of getting this data if no real difference existed. 
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   False Discovery Rate (FDR) and q-Value 

◉p-value measures significance in terms of false positive rate.  
◉p-value cut-off of 0.05 means that there is 5% chance that this gene is called significant when it 
is truly null. Out of 15000 genes 750 are false positives. 
◉q-values measures significance in terms of false discovery rate. 

 
◉Takes into account that several features are simultaneously tested, hence a better measure. 
◉A q-value cut off of 0.05 results in a FDR of 5% among all significant genes. 
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Graphical Plots 

p-value versus t-statistics and q-value versus t-statistics plots. 

Plot of number of significant genes filtered for respective p-value and q-value cutoff Histogram of t-test results 



   Result 

◉ Number of genes filtered for 4 statistically significant p and q value cutoffs 
 
 
 
 

◉We use q-value cutoff of 0.005 and the resultant list of 168 genes is identified as 
differentially expressed between the diseased and healthy population. 

Cut off value No. of Significant genes 

based on p-value 

No. of Significant genes 

based on q-value 

0.001 374 31 

0.005 968 168 

0.01 1231 316 

0.05 2659 1270 



Clustering of  
Significant Genes 



   Objective 

◉Clustering - statistical technique used to generate a category structure that fits a set of 
observations. 
◉High degree of association between members of the same group, low degree of 
association between members of different groups.  
◉Clustering of gene expression patterns is used to identify groups of co-expressed genes. 
◉Genes belonging to same cluster are typically involved in related functions and are 
frequently co-regulated.. 



   Methodology 
◉Hierarchical clustering: agglomerative  
Distance Measures 
◉Euclidean Distance  
◉Manhattan Distance 
◉Mahalanobis distance                                                 where  
◉Pearson correlation coefficient  
◉Spearman Rank correlation coefficient  
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   Linkage criterion and Dendrogram 

◉Dendrogram : hierarchical series of nested clusters 
graphically represented by a tree, called dendrogram. 
◉Cutting the dendrogram at different depths produces 
different number of clusters  

 



Cluster Validity 
Partitional Clustering 

◉ Dunn’s Index 
◉ Davies-Bouldin  Index  
◉ Calinski- Harabasz Index  
◉ Silhouette Index  
◉ CS Index  
◉ SYM-Index  
◉ SV-Index  

◉ Hierarchical Clustering 

Cophenetic Correlation Coefficient 
(CPCC) measures original pairwise 
dissimilarities between the feature 
vectors and the cophenetic 
dissimilarities from the dendrogram 
 



Distance and Linkage criterion Selection 

  Single Linkage Average Linkage Complete Linkage 

Euclidean Distance 0.6515 0.8254 0.7230 

Manhattan Distance 0.6669 0.8172 0.7182 

Mahalanobis Distance 0.8319 0.8550 0.3216 

Pearson Correlation 

Distance 

0.8844 0.9118 0.8653 

Spearman Correlation 

Distance 

0.9046 0.9224 0.8843 

  Single Linkage Average Linkage Complete Linkage 

Euclidean Distance 0.7024 0. 8263 0.7483 

Manhattan Distance 0.7022 0.8457 0.7586 

Mahalanobis Distance 0.8205 0.8437 0.3039 

Pearson Correlation 

Distance 

0.7071 0.8315 0.8128 

Spearman Correlation 

Distance 

0.6750 0.8484 0.7612 

Hierarchical Cluster Analysis on Healthy Population 

Hierarchical  Cluster Analysis on Diseased Population  



Deciding the k - parameter 
For Healthy Population 
k-parameter Dunn’s Index Davies-

Bouldin  

Index 

Calinski- 

Harabasz 

Index 

Silhouette 

Index 

CS Index SYM 

Index 

SV Index 

2 0.519489466 0.421794 179.4794 0.320344 2.417697 0.123279 0.058357 

3 0.521822826 1.285558 240.179 0.341226 3.007731 0.202354 0.475018 

4 0.301566338 1.354472 127.1219 0.267722 3.691343 0.083151 0.375878 

5 0.301566338 1.235196 96.22031 0.249841 2.543032 0.11748 0.397804 

6 0.301566338 1.175929 77.90129 0.233563 2.130993 0.187262 0.417877 

7 0.301566338 1.100681 65.56314 0.226116 2.929643 0.169686 0.275173 

8 0.301566338 1.026924 56.36059 0.214371 4.345251 0.150266 0.187871 

9 0.250779006 1.204307 51.56966 0.22683 5.736134 0.133218 0.151053 

10 0.250779006 1.215522 46.92917 0.225899 6.390402 0.122311 0.132319 



Deciding the k - parameter 
For Diseased Population 

k-parameter Dunn’s Index Davies-

Bouldin  

Index 

Calinski- 

Harabasz 

Index 

Silhouette 

Index 

CS Index SYM 

Index 

SV Index 

2 0.323957822 0.546018 102.3888 0.3014 2.51132 0.0931 0.093128 

3 0.339238222 0.900783 137.9075 0.3158 2.472717 0.1532 0.153163 

4 0.375366245 1.121942 240.9651 0.3796 1.976578 0.2221 0.122059 

5 0.339434355 1.061795 80.1508 0.2891 5.670765 0.0992 0.099245 

6 0.296278403 1.031703 64.8691 0.2763 6.60191 0.1524 0.152398 

7 0.296278403 0.965214 54.5249 0.2595 1.219989 0.1577 0.157732 

8 0.296278403 0.883861 47.1872 0.2603 1.067121 0.1773 0.177312 

9 0.352699333 0.936416 44.0637 0.2698 9.959585 0.1571 0.157077 

10 0.352699333 0.850708 39.3389 0.274 8.445925 0.147 0.147001 

s 



Dendrogram for optimal k-parameter 
For Healthy Population For Diseased Population 



Cluster Assignment Analysis 
◉For healthy population genes distributed as 
Cluster#1 20 genes 
Cluster#2 72 genes 

Cluster#3 76 genes 

 

 

 

◉For diseased population genes distributed as 
Cluster#1 13 genes  Cluster#3 60 genes 
Cluster#2 18 genes  Cluster#4 77 genes 
 

 

 

 

 

◉Cluster# 1 of Healthy Dataset and Cluster# 2 of Diseased Dataset 72.22% similarity 

◉Cluster# 2 of Healthy Dataset and Cluster# 3 of Diseased Dataset 100% similarity 

◉Cluster# 3 of Healthy Dataset and Cluster# 4 of Diseased Dataset 89.61% similarity 

◉Extra cluster of diseased population: 10 genes (Cluster# 2) , 2 genes (Cluster# 1) and 1 gene (Cluster# 3) of healthy dataset 

◉We identify 12 genes showing different cluster assignments in healthy and diseased population. 

 

 

 

 

 

 

 



Biological Enrichment of Clusters 

◉Gene Ontology 
◉Provides descriptions about gene products in terms of 
 biological process (BP) 
 molecular function (MF) 
 cellular components (CC)  
• GO Term Finder tool (http://go.princeton.edu/ )  
• Significant GO terms shared between queried genes 
• p-value  : degree of enrichment  
• Small p-value – stronger evidence of annotation 

 

http://go.princeton.edu/


Healthy Population Cluster Analysis 
◉Cluster#1 : regulatory cluster 

 GOID GO TERM from biological_process Ontology p-value < 0.05  % of Genes of 

Cluster Annotated 

GO:0044237 cellular metabolic process 0.004534 75 

GO:0051128 regulation of cellular component organization 0.000635 30 

GO:0048583 regulation of response to stimulus 0.014725 30 

GO:0022414 reproductive process 0.000166 25 

GO:0009653 anatomical structure morphogenesis 0.008663 25 

GO:0080134 regulation of response to stress 0.002823 25 

GO:0009719 response to endogenous stimulus 0.005762 20 

GO:0006357 

regulation of transcription from RNA 

polymerase II promoter 0.019413 20 

GO:0002697 regulation of immune effector process 0.000658 15 

GO:0050679 positive regulation of epithelial cell proliferation 0.001952 10 



Healthy Population Cluster Analysis 
◉Cluster#2 : response and signaling cluster 

GOID GO TERM from biological_process 

Ontology 
p-value <0.001  % of Genes of 

Cluster Annotated 

GO:0050896 response to stimulus 1.42E-06 65.55556 

GO:0007154 cell communication 8.44E-05 53.05556 

GO:0044700 single organism signaling 0.00014 41.66667 

GO:0007165 signal transduction 0.000218 38.88889 

GO:0044707 single-multicellular organism process 1.64E-05 37.5 

GO:0048518 positive regulation of biological process 5.19E-06 36.11111 

GO:0010468 regulation of gene expression 0.000363 31.94444 

GO:0044767 single-organism developmental process 0.00053 30.55556 

GO:0006950 response to stress 4.40E-05 29.16667 

GO:0002376 immune system process 2.78E-05 22.22222 

GO:0010646 regulation of cell communication 0.0004 22.22222 

GO:0035556 intracellular signal transduction 0.000794 22.22222 

GO:0006955 immune response 2.41E-05 18.05556 

GO:0006952 defense response 0.000126 16.66667 



Healthy Population Cluster Analysis 
◉Cluster#3 : cell development and maintenance cluster 

GOID GO TERM from biological_process 

Ontology 

p-value <0.001  % of Genes of 

Cluster Annotated 

GO:0019222 regulation of metabolic process 0.000159 43.42105 

GO:0044767 single-organism developmental process 6.34E-06 35.52632 

GO:0048856 anatomical structure development 6.93E-06 32.89474 

GO:0030154 cell differentiation 0.000472 32.36842 

GO:0048513 organ development 6.15E-05 21.05263 

GO:0008283 cell proliferation 0.000142 15.78947 

GO:0008219 cell death 0.000648 15.78947 

GO:0010941 regulation of cell death 0.00099 13.15789 

GO:0043687 post-translational protein modification 2.64E-06 9.210526 

GO:0006281 DNA repair 0.000851 9.210526 

GO:0044770 cell cycle phase transition 3.33E-05 9.210526 

GO:0010564 regulation of cell cycle process 6.58E-05 9.210526 

GO:1901214 regulation of neuron death 0.000786 5.263158 



CONSTRUCTION  
OF  

GENE REGULATORY NETWORK 



◉GRN - most important organizational level in the cell, signals from the cell state 
and the outside environment are integrated in terms of activation and inhibition of 
genes. 
◉“Connection” connotes regulatory interaction 
◉Genes having similar gene expression profiles are more likely to regulate one 
another or be regulated by some other common parent gene.  
◉Bayesian Network approach 
◉Modified version of Sparse Candidate Algorithm [6]  

 

 Objective 



Bayesian Network Formalisms 
◉Represents joint probability distribution of random variables 
consisting of two components 
◉      -DAG vertices correspond to             
◉Encodes Markov assumption  
◉    conditional probability distribution (CPD) of  
◉Joint distribution satisfying conditional independence 
properties decomposed by chain rule for Bayesian networks  
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Learning Bayesian Network 
◉Given a training set of samples            independently drawn from some unknown 
Bayesian Network       with underlying distribution     , goal : recover  
◉Parameter Learning : given network structure     , set of data instances    determine what values of 
best describes the generated data. 
◉Maximum Likelihood estimation :      ,choose         closed form :   
◉Structure Learning :define scoring function that measures how well each model fits the observed 
data. Optimization algorithm employed to search for highest scoring model. 
◉By Bayes rule,         ignoring normalization factor        
where                                                and by decomposability  
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Search Algorithm 
◉Input : training set , scoring function, set of 
possible network structures  
◉Output : network structure that maximizes score 
◉        possible structures : NP-Hard problem 
◉Initial Network Formation 
◉Discretization : Z-score 

◉Mutual Information 
◉Select k nodes giving highest MI as candidate 
parents for    
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Sparse Candidate Algorithm 
 



Results 

Initial network based on mutual information between genes, 60 edges Final GRN for Cluster# 1 of healthy population, 39 edges 



Validation of predicted network 

Gene Interaction Network returned by GeneMANIA 

Serial # GeneMANIA 

Network Edge or 

Path 

Network Study 

for the edge 

Bayesian Network Edge 

Connection 

Connectivity 

between 

nodes 

in Bayesian 

network 

Dependence 

Evident From 

1 C6 – NELL2 Ramaswamy-

Golub-2001 

Parent-Child Causal 

Reasoning 

2 C6 – HTRA1 Burington-

Shaughnessy-

2008 

Descendant Causal flow of 

dependence 

3 BICC1–SOX9 Burington-

Shaughnessy-

2008; Innocenti-

Brown-2011 

Common 

Parent 

Evidential 

reasoning 

causal 

reasoning 

4 BICC1 –SOX9 –

NR2F1 

Kang-Willman- 

2010  

 

  

Parent-Child Causal 

Reasoning 

5 CLGN –ODF2 Mallon-McKay-

2013 

Common 

Parent 

Evidential 

reasoning 

causal 

reasoning 

C6 NELL2

C6 NELL2 HTRA1 

           C6

           

SOX9          BICC1

BICC1 NR2F1

           

                   

ODF2           

DNA

   

JC6

CLGN



Conclusion 
◉Genome wide expression profile analysis of 
healthy and diseased population 
◉Identification of genes exhibiting differential 
expression pattern between healthy and diseased 
population  
◉Clustering genes into groups of co-expressed 
genes 
◉Construction of intra-cluster gene regulatory 
network 

 

Future Scope  

◉ Incorporation of fuzzy clustering measures  
◉ Model GRN using continuous variables 

Bayesian network 
◉ Inter-Cluster GRN with efficient learning 

algorithms 
◉ Analysis of network connectivity change 

between healthy and diseased population 
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